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Alternating direction method of
multipliers (ADMM)



(P):  min f(x)+g(z) s.t. Ax+ Bz=b.



(P):  min f(x)+g(z) s.t. Ax+ Bz=b.

e Problem (P) appears naturally (or after variable splitting) in
many applications.
e The Lasso problem min, 3||Ax — b||2 4+ A||x|1 may be

formulated as

min 1(|Ax — b|? + A|z|l1 s.t. x—z=0,
X,z



Preliminaries

Let f : R" —» (—o00, 0] be a closed proper convex function.
Suppose that L € (0,00) and p € [0, 00).

e The function f is called L-smooth if for any x1,x» € R”,

|Vf(x1) — V(x| < Ljx1 — x2f] Vxi,x2 € R".



Preliminaries

Let f : R" —» (—o00, 0] be a closed proper convex function.
Suppose that L € (0,00) and p € [0, 00).

e The function f is called L-smooth if for any x1,x» € R”,

|Vf(x1) — V(x| < Ljx1 — x2f] Vxi,x2 € R".

e The function f is called ji-strongly convex function if the
function x — f(x) — &||x||? is convex.

We denote the set of ;i-strongly convex functions by F,(R").



(P):  min f(x)+g(z) s.t. Ax+ Bz=b.

f e Fuu(R") and g € F,,(R™).
AcR™" BcR™™ and b € R".
Tlag mreis (A B) res il e il

(x*,z*, A*) is a saddle point.



(P): min f(x)+g(z) s.t. Ax+ Bz=b.

Set: \° € R", 2 € R™, number of steps N and step length t. 20 = 2.
fork=1,....N
xK = argmin, f(x) + (A1, Ax + BzK1 — b) + L||Ax + bz*~! — b||?
zk = argmin, g(z) + (\*71, Axk + Bz — b) + £||Axk + bz — b||?
M= N1t (Axk + BzK — b)




Variational inequality format

D(\) = min f(x)+g(z) + (\,Ax + Bz — b)
= —(\,b) — F*(—=ATX) — g*(—=BT\).

e maxyerr D(\) (under some mild conditions) is equivalent to

0.c¢(A) +(N),
where ¢()\) = AGf*(—ATX) — b and ()\) = Bag*(—BT\).

Eckstein, J., & Bertsekas, D. P. (1992). On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone operators.
Mathematical Programming, 55(1), 293-318.



Known results on convergence rate

e Let f and g be with moduli g3 > 0 and
1o > 0, respectively. If t < i/)\max(ATzigéax(BTB)’ then
)\1 o )\*||2
D) — DNy < I = A

Goldstein, T., O'Donoghue, B., Setzer, S., & Baraniuk, R. (2014). Fast
alternating direction optimization methods. SIAM Journal on Imaging
Sciences, 7(3), 1588-1623.



SDP performance analysis



Worst-case analysis

max D(\*) — D(AN)

s.t. {x¥, 2% A}V is generated by ADMM w.r.t. f,g, A B, b,\° 2, t
(x*,z¥) is an optimal solution with Lagrangian multipliers \*
X — X+ 2B (2 — )P = A
feFuR",ge F,(RM)
Amax(ATA) = 11, Amax(B T B) = 12
MERNZERT AcR™" BeR™™ beR',

e Variables: f,g,A, B, b,X\°, 2, x*, z*, \*;
e Parameters: u1, o, v1, Vo, t, A.



Worst-case analysis

max D(\*) — D(AN)

s.t. {x¥, 2% A}V is generated by ADMM w.r.t. f,g, A B, b,\° 2, t
(x*,z¥) is an optimal solution with Lagrangian multipliers \*
X — X+ 2B (2 — )P = A
feFuR",ge F,(RM)
Amax(ATA) = 11, Amax(B T B) = 12
MERNZERT AcR™" BeR™™ beR',

e Variables: f,g,A, B, b,X\°, 2, x*, z*, \*;
e Parameters: u1, o, v1,vo, t, A.

Key idea: This can be solved using semidefinite programming
(SDP) by representing F,(R") via interpolation. 7



Semidefinite programming performance estimation

Main tool: performance
estimation, introduced in:

Y. Drori and M. Teboulle. Performance of first-order methods for smooth
convex minimization: a novel approach. Mathematical Programming,
145(1-2):451-482, 2014.



Interpolation Problem

Consider a finite index set /, and given triple {(xk,gk, f")}kel where
xk e R, gk € R" and ¥ e R.



Interpolation Problem

Consider a finite index set /, and given triple {(xk,gk7 fk)}kel where
xk e R", gk € R" and fk e R.

f

fe

k4

7 feFu(R"): f(x)=fk and gkeodf(xk), Vkel.



Interpolation Problem

Consider a finite index set /, and given triple {(xk,gk7 fk)}kel where
xk e R", gk € R" and fk e R.

f
)
X
7 feFu(R"): f(x)=fk and gkeodf(xk), Vkel.
If yes, we say {(x*, gk, f¥) }kel is F,,(R")-interpolable. 9



L-smooth and j-strongly Interpolation

Theorem (Taylor, Hendrickx, and Glineur (2017))

The following statements are equivalent:

1. {(xi,gi,fi)}iel is F(R™)-interpolable;
2. Vi,jel:

Ll - &I < £ = = (g = ).

A.B. Taylor, J.M. Hendrickx, and F. Glineur. Smooth strongly convex
interpolation and exact worst-case performance of first-order methods.
Mathematical Programming 161.1-2, 307-345 (2017)
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Finite dimensional formulation

max D(\*) — D(AN)

s.t. {(x} €5 AV U {(x*; €% F)} satisfy interpolation constraints
{(Z5 0% g U {(z";n*; &%)} satisfy interpolation constraints
(x*,z*) is an optimal solution with Lagrangian multipliers A*
1N = M2+ 2218 (2 — )P =
= —ATX0 — tAT Ax! — tAT B3,
ek = AT AT Ak — tATBZA Y ke {2,...,N}
n = —BTAT _tBTAXK —tBTBz*, ke {1,..,N}
M= M (AR + BZzK — b), ke {l,...,N}
Amax(ATA) = 1, Amax(BT B) = 1

MERLZERT AcR™*" BecR™™ becR". "



e ADMM is invariant under translation. We may assume w.l.o.g.

12



e ADMM is invariant under translation. We may assume w.l.o.g.

e Since (A B) has full row rank

N = Ax + Bz, \° = Ax? + BZ°,

for some X, z, x°, 20.
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e ADMM is invariant under translation. We may assume w.l.o.g.

e Since (A B) has full row rank

N = Ax+ Bz, A = Ax® + BZ°,

for some X, z, x°, 20.
o let U= <X0 x1 . xN+1 >
V= (zo z! z ) Consider matrix variable
X=U"uU, z=VTy,

= (Au BV>T(AU BV).

12



SDP formulation

max f* +g* — N gV _tr(L,Y)

s.totr(LEY) +tr(Of;X) < F = F, i je{l,.,N+1,%}
tr(L8;Y) +tr(Of,2) < g' — g/, i,je{l,...,N,*}
tr(LoY) + Zns3 vz = A
X»=0,Y>=02Z=0,
nX = Y,
vl = Yoo.

13



Performance estimation technique

o We employ weak duality to bound the optimal value of the
last problem by constructing a dual feasible solution of SDP.

14



Performance estimation technique

o We employ weak duality to bound the optimal value of the
last problem by constructing a dual feasible solution of SDP.

e The dual feasible solution is constructed empirically by doing
numerical experiments with fixed values of the parameters
Av Na M1, le M2, L2'
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Performance estimation technique

o We employ weak duality to bound the optimal value of the
last problem by constructing a dual feasible solution of SDP.

e The dual feasible solution is constructed empirically by doing

numerical experiments with fixed values of the parameters
Av Na 1250 L17 M2, L.

e The analytical expressions of the dual multipliers and optimal
value are guessed and the guess is verified analytically.

14



New results




Convergence rate in terms of dual objective value

Theorem 1.

Let f € F,,,(R") and g € Fo(R™) with 17 > 0. If t <
and N > 2, then

)\max(ATA)

1A = X2 + 2 1B (2 = 7)1
4Nt ’

D(\*) — DY) <

ii5)



Exactness of the bound

o Let u3 >0, N>2and t € (0,p1]. Let f,g: R — R be given

as,

16



Exactness of the bound

o Let u3 >0, N>2and t € (0,p1]. Let f,g: R — R be given

as,

o9l = 5l g(Z):%max{%(Z*mlvr)* R

e Consider the optimization problem
min f(x) + g(z), s.t. x+2z=0.
(x*,z*) = (0,0) and X* = 3.
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Exactness of the bound

o Let u3 >0, N>2and t € (0,p1]. Let f,g: R — R be given

as,

e Consider the optimization problem
min f(x) + g(z), s.t. x+2z=0.
(x*,z*) =(0,0) and \* =

[SYNI

e ADMM with initial point A\° = =! and 2 = 0 generates
xk*O.zk*ﬁA/\k*%lJrﬁ ked{l,..., N}.
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Exactness of the bound

o Let u3 >0, N>2and t € (0,p1]. Let f,g: R — R be given

as,

e Consider the optimization problem
min f(x) + g(z), s.t. x+2z=0.
(x*,z*) =(0,0) and \* =

[SYNI

e ADMM with initial point A\° = =! and 2 = 0 generates
xk*O.zk*ﬁA/\k*%lJrﬁ ked{l,..., N}.
o At AV, we have D(\V) = 4;,\/1t = ‘/\[)7/\*“27433!5(272’W.
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Linear convergence rate




Pt inequality

e The function D is said to satisfy the Pt inequality if there
exists an L, > 0 such that for any A € R" we have

D(X*) = D(N) < ot [I€11%, € € b— AdF*(=AT)) — Bdg™(—BT)).
e For D(A\) = —(\, b) — F*(—AT\) — g*(=BT\):

b— Adf*(—ATX) — Bag*(—=B")\) C d(—D()\)).

17



Linear convergence rate

Theorem 2.

Let f € Fu,(R") and g € F,,,(R™) with p1, 2 > 0, and let D satisfies the

with L,. Suppose that t < \/ci1c, where ¢; = and

M1
Amax(ATA)
_ 2
@ = X (BTB)

(I) If C1 2 coB then

2c100 — t?
2cico — t2 + Lpt(4C1C2 — Gt — 2t2)7

D(\*) — D()\?
D(A\*) — D(\

in particular, if t = \/ac,

) <

D(\*) — D(X\?
)—D(\!

) 1
DOV) = D(V) =

1+ Lp (2\/C1C2 = Cz).
(i) If a < e, then
D(X*) — D(X?)
A )T AR ) o
D(A*) = D(AY) —
4622 — 204 /16 — 1.'2
4c2 — 20 /c1c — t2 + Lyt (8622 + 50t —2/aa <1 + é) (2c2 + t)> 18




Sufficient conditions for the Pt inequality

Scenario  Strong convexity Lipschitz continuity = Full row rank
1 f.g Vf A
2 f.g Vf, Vg -

Deng, W., & Yin, W. (2016). On the global and linear convergence of the
generalized alternating direction method of multipliers. Journal of Scientific

Computing, 66(3), 889-916.
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Necessary conditions for the linear convergence

Theorem 3.
Let f € F,,(R") and g € F,,,(R™). If ADMM is

with respect to the , then D
satisfies the

20



R-linear convergence




Known results on convergence rate

Nishihara et al. showed the R-linear convergence of ADMM in
terms of {x*, z%, Ak} under the following conditions:

i) The function f € F,,(R") is L-smooth with p; > 0;

i) The matrix A is invertible and that B has full column rank.

Nishihara, R., Lessard, L., Recht, B., Packard, A., & Jordan, M. (2015). A
general analysis of then convergence of ADMM. International Conference on
Machine Learning (PMLR), 343-352.
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Necessary conditions for the linear convergence

Theorem 4.
Let N > 2 and let A has full row rank. Suppose that
f € Fu,(R") is L-smooth with ;1 > 0 and g € Fo(R™). If

c w1 il
t < mln{ Amax(ATA)? \/Amin(AAT))\max(ATA) },

then

N VO 2Amin (AAT )1 t N—2
D()\*) - D()\ ) < 8t <1 - L“1+2>‘mi”(AAT)M1H')\min(AlAT))\max(ATA)ﬁ) ,
where

Vo= X=X+ 2B (2~ =)

22



Necessary conditions for the linear convergence

Theorem 5.

Let f € F,,,(R") with p; > 0 and let g € Fo(R™) be L-smooth.
Assume that N > 3 and B has full row rank. If

; M1 L
t < m'n{ZAmax(ATA)’ 2>\man(BBT)}’ then

. . 2N—6
D(\) —D(\V) < ¥ (W) , (5.1)

where

VO = A% — M2 + 2|8 (2° - ) |)°.

23



Conclusion




Discussion

» The computation of the tight bound for linear convergence

rate.
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Discussion

» The computation of the tight bound for linear convergence

rate.

» The performance analysis of fast ADMM.
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Discussion

» The computation of the tight bound for linear convergence
rate.

» The performance analysis of fast ADMM.

» The strong convexity of f (or g) can be replaced with the
convexity of £ — ci|| - ||5 (or g — c2|| - ||%) for some ¢; > 0 (or
()] 2 0)

Preprint at arxiv.org/abs/2206.09865
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The End




Omar Khayyam (1048-1131)

M&wdu(;{;)[:d ijjr’/’/’)'}}ﬂrﬂ

e Bl Soirt el LUl Sy

And we, that now make merry in the Room
They left, and Summer dresses in new Bloom.
Ourselves must we beneath the Couch of Earth

Descend, ourselves to make a Couch - for whom?
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